

Optimize Occupant Health, Building Energy Performance and Your Revenue Through Indoor-Air Hydration

Stephanie Taylor, M.D., M. Arch

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

EDUCATION PARTNER

COURSE TITLE

Optimize Occupant Health, Building Energy Performance and Your Revenue Through Indoor-Air Hydration

By Provider's Name - ASHRAE

GBCI cannot guarantee that course sessions will be delivered to you as submitted to GBCI. However, any course found to be in violation of the standards of the program, or otherwise contrary to the mission of GBCI, shall be removed. Your course evaluations will help us uphold these standards.

Course ID: 0090010881

Approved for:

General CE hours

LEED AP HOMES

LEED-specific hours

X

ND

Course Description

Why are human beings struggling with so many infections, allergies and chronic diseases? Are we simply becoming weaker creatures while microbes are evolving into more infectious and problematic germs? Or, we are missing something very important – some force or factor that is simultaneously increasing our vulnerability while strengthening micro-organisms that make us sick? Come to this seminar to learn how essential YOU, the professionals in designing, building and managing indoor environments, are in turning around these alarming health trends.

Understanding the powerful influence of indoor air on humans is not just theoretically interesting; it has become an urgent topic for all of us. For those unsure of the "return-on-investment" for buildings that support occupant health, financial data will also be presented.

Get ready to be totally amazed by the power of properly managed indoor air and learn actionable steps to improve your own health, productivity and learning.

Learning Objectives

- 1. Describe the impacts of humidity on occupant health, the microbiome of the built environment, and the transmission of germs.
- 2. Understand the relationships between water in the liquid and vapor state, and the human body.
- 3. Understand how humidity levels affect the infectivity of viruses and bacteria.
- 4. Learn the application of energy-saving and hygienic approaches to active humidification when supplementation is necessary as an intervention for dry air.
- 5. Provide building owners a cost-benefit analysis of occupant health as a building performance metric.
- 6. Participate in ASHRAE discussions on best-practice indoor humidification minimum and maximum levels for occupied buildings.

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
 Are buildings still shalts
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

We are trying hard to decrease HAI rates, but these infections are still too common

Autoimmune, inflammatory and many infectious diseases are on the rise

Domesticated dogs are now carriers of the quickly evolving influenza virus

350,000 years ago humans lived and worked 100% outdoors

2,000 years ago humans lived in buildings, still spending 100% of lifetime

outdoors

200 years ago working in factories and offices, living 90% indoors

Last **20 years ago** live and work in airtight, mechanically ventilated buildings

air tight barrier

filter ventilator air-conditioning

50 years ago live and work in centrally heated and ventilated buildings

Homo Indooris - we are now inside 85% of our time

"We shape our buildings, then they kill us!" Dr. Dickerman

- Open dwellings
- Outdoor air exchange

- Tight building envelopes
- Mechanical air ventilation systems

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

Thankfully, we can now see if this is true

Tissue culture

Metagenomics 2018

Genetic analysis has shown us that each of us is an entire ecosystem!

Buildings have their own microbiome

A closer look at our surroundings

video clip

The indoor environment now drives natural selection

Occupants send microbes into buildings

Building design, use and ventilation "select" microbes which survive and interact with occupants

Microbes in mechanically ventilated buildings are more closely related to pathogens

A study to examine the impact of a building on occupant health

One year-long study to evaluate the patient room environment and HAIs

Correlate indoor conditions in 10 patient rooms and 2 nurse stations

With new patient infections

One year-long study to evaluate the patient room environment and HAIs

8 million room data points ~ 300 patient outcomes

Room	Clinical symptoms	HAI Organisms (if indicated)
xx	pneumonia, viremia	Pseudomonas, Epstein-Barr virus
xx	pneumonia	Staphylococcus aureus
xx	open wound of head, neck, and trunk	
xx	bacteremia, organism unspecified	Citrobacter infection
xx	infection due to vascular device	
xx	cellulitis	Staphylococcus aureus
xx	sepsis, cellulitis, abscess	
xx	bacteremia, organism unspecified	
xx	pneumonia, organism unspecified	
xx	fever; bacteremia, organism unspecified	
xx	viremia	Cytomegalovirus (CMV)
xx	wound infection after surgery	, , , ,
xx	urosepsis, organism unspecified	
xx	sepsis following cardiac surgery	
xx	pneumonia, organism unspecified	
xx	infection of skin and subcutaneous tissue	
xx	colitis and diarrhea	Clostridium difficile
xx	wound infection after surgery	
XX	urosepsis, organism unspecified	
хх	diarrhea	salmonella enteritis

As patient room RH went up, HAIs went down!

2018 Study: Indoor-air RH and health outcomes in residents in a long-term care facility (over 4 yrs)

Patient infections

VS

Infections

- respiratory (viral & bacterial)
- GI (Noro. & Notovirus, C. diff)
- urinary tract
- conjunctivitis
- cellulitis

Environmental data

Indoor conditions

- temperature
- relative humidity
- visitors
- staff absenteeism

Outdoor climate

- temperature
- relative humidity
- flu outbreaks

Respiratory & GI infection rates were lowest when indoor RH = 40-60%

2018 study: Humidity decreased Influenza A illness in a pre-school

January 25 – March 11 (32 days)

Half of the classrooms were humidified, the other half were not

RH of classrooms	% Airborne particles carrying virus (PCR)	Virulence of airborne virus (% cells infected)	# children absent due to influenza illness
20%	49%	75%	22
45%	19%	35%	9

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

What determines if this cough will infect others?

When RH < 40%, pathogen infectivity is high

Greater airborne transmission

Evasion from surface cleaning through resuspension

Increased survival and infectivity

Infectious droplets shrink, travel far and evade surface cleaning when the air is dry

Does recontamination from infectious droplet nuclei settling out of the air explain this?

Contact precautions have <u>**not</u>** been shown to effectively reduce transmission in most patients with MRSA and VRE</u>

When full contact precautions were stopped:

- No significant increase in transmission rates
- The health system saved approx. \$643,776 and 45,277 hours per year in healthcare worker time previously spent on donning and doffing personal protective equipment

C. diff can travel in infectious aerosols

December 2018 – American Journal of Infection Control.

- C-Diff seeded in a toilet
- Water samples, settle plates, and air samples
- Spores present after 24 flushes
- Droplet nuclei spore bioaerosol produced over at least 12 flushes

Transmission of bacteria in the OR is higher in low RH

*=p<0.0167 v. 20RH

The sterile field was less contaminated in OR with RH 35% vs 20%

Influenza A virus is more infectious when RH is below 40%

RH **(%)**

Noti 2007

Did the very low RH in the airplane cabin contribute to this?

nearly two decades after disease's 'elimination' in U.S.

"Flight attendant in Hospital After Deadly Infection Spreads Onboard" April 7, 2019

✓Yes, she was vaccinated!

Pathogens Requiring Airborne Infection Isolation

- Anthrax
- Avian influenza
- Varicella disease (chickenpox, shingles
- Measles (rubeola)
- Severe acute respiratory syndrome (SARS)
- Smallpox (variola)/Varioloa virus
- Tuberculosis (TB)

Pathogens Requiring Airborne Infection Isolation

New news

- Clostridium difficile
- Diphtheria
- Epiglottitis, due to Haemophilus influenzae type b
- Haemophilus influenzae Serotype b (Hib) disease
- Influenza, human (typical seasonal variations)
- Meningitis & Meningococcal disease sepsis, pneumonia
- Mumps (infectious parotitis)/Mumps virus
- Mycoplasmal pneumonia
- Parvovirus B19 infection (erythema infectiosum)
- Pertussis (whooping cough)
- Pharyngitis from Adenovirus, Orthomyxoviridae, Epstein-Barr virus, Herpes simplex virus

- Pneumonia (Adenovirus, Haemophilus influenzae Serotype b, Meningococca Mycoplasma)
- Streptococcus Group A
- Pneumonic plague/Yersinia pestis
- Rubella virus infection (German measles)/Rubella virus
- Severe acute respiratory syndrome (SARS)
- Streptococcal disease (group A streptococcus)
- Viral hemorrhagic fevers due to Lassa, Ebola, Marburg, Crimean-Congo fever viruses
 Stanford Environmental Health & Safety

This is the most startling news of all...

"Antibiotic Resistance Can Spread Through The Air, Scientists Warn, And Yes - You Should Be Terrified" July 26, 2018

Dry conditions increase <u>horizontal</u> transfer of antibiotic resistance genes

When RH<40%, humans suffer!

Sitting in room air with 20% RH, the average person becomes clinically dehydrated in 8 hours

more infections & asthma attacks

impaired brain function

skin cracking, decreased wound healing

dry eyes, excessive tearing

Dry air impairs our respiratory system defenses

"Low ambient humidity impairs barrier function and

innate resistance against influenza infection"

Proceedings of the National Academy of Sciences, USA. May 19, 2019

Eriko Kudo, Eric Song, Laura Yockey, Tasfia Rakib, Patrick Wong, Robert Homer, Akiko Iwasaki

Question investigated: Why do these differences exist?

Study setup

MX1 •

Mx1 mice have functional Type I IFN responses

Chamber conditions Temp = 20°C

Summary: Innate respiratory protective mechanisms are optimal at 50% RH, and impaired at RH 20%

Summary: Innate respiratory protective mechanisms are optimal at 50% RH

ASHRAE 1985:"Optimal RH Level For Health" = 40%–60%

35 years later..... Taylor Chart 2019

Presentation Summary

We are *Homo-indooris*

New understanding

Please explain!

New directions

- Medicine is failing us
- Are buildings still shelters?
- New tools and new data
- Hospitals, offices, schools
- Microbes indoors
- Humans indoors
- What should we do?
- Conclusions

The great indoor air RH debate!

Humidification is used when the financial impact is quantifiable

National Institute of Health animal facility

NASA spacecraft

Louvre

Replacement cost of a primate: \$22,000 RH 40%–60% Cost to train an astronaut: \$50 million (in 2006)

RH 40%-60%

Mona Lisa value: \$780 million RH 40%–60%

HAIs are costly for a 250 bed hospital

Summary of Total Excess Costs and Hospital Days Due to Hospital Acquired Infections

	Total Infections	Total Excess Costs	Total Excess Hospital Days
Urinary Tract Infections	1,296	\$1,435,968	2592.0
Surgical Wound Infections	365	\$7,042,464	4378.0
CRBSI	148	\$4,990,636	2509.0
VAP	15	\$401,369	170.0
MRSA	120	\$927,162	646.0
CDIFF	122	\$500,200	733.0
TOTAL	2,066	\$15,297,799	11,028.0

The majority of bacteria causing HAIs are resistant to dryness and survive in the air

Acinetobacter supp.	3 d up to	5 months	6 references
Clostridium difficile (spores)		5 months	3 references
Escherichia coli	1.5 h up to	16 months	10 references
Enterokokkus supp. inkl. VRE und VSE	5 d up to	4 months	4 references
Klebsiella supp.	2 h up to	>30 months	5 references
Pseudomonas aeruginosa	6 h up to	16 months	7 references
Staphylococcus aureus, inkl. MRSA	7 d up to	7 month	6 references

reaction to hospital's dry environment \rightarrow increased infectivity

Hospital surfaces are dry and non-porous

MR

MR

Kramer A et al, How long do nosocomial pathogens persist on inanimate surfaces? a systematic review, BMC Infectious Diseases 2006, 6:130

MR

MR

Value analysis of humidification in 250-bed hospital

BENEFITS - Year One			Dollars	Q4
Increased Revenue	Maximize per day bed value by decreasing LOS Decrease non-reimbursable HAI costs	5 \$ \$	1,310,126 764,890	,126.00 ,890.00 ,787.00
Cost Avoidance	3% CMS penalty for read CMS Quality Index penal Joint Commission duation Employee absenteeism HAL litigation by parients	380 380	91,787 TBD TBD TBD TBD	TBD TBD TBD 166,803 367,212
INVESTMENTS	Quarterly total Cumulative value Cumulative value Cumulative value	018 orter	2,166,803 \$2,166,803	(23,850) (34,573) -
NET VAL	Gas 500.9	17%		142,194)
	Installation & Integration of New System Maintenance Operating Cost OR & PT Room Down Time	\$ \$ \$	(1,198,500) (23,850) (34,573) (10,000)	L08,380 225,018
	Quarterly total		(\$1,266,923) (\$1,266,923)	
NET VALUE			(91,200,923)	

Change is hard! We resist and often do not even listen

Uniting our goals would benefit everyone

Medical professionals

Heal patientsFollow clinical protocolsAvoid lawsuits

Building professionals

Reduce energy useStay within budgetFollow building codes

IMPROVE OCCUPANT HEALTH

Better health
Decrease acute and chronic diseases
Decrease financial losses from illness

Evolution and RH

skull of the grassland Saiga antelope

Evolution and RH

A large cranial air cavity increases ambient RH, preventing dust particles and parasites from entering delicate lung tissue

the African desert first cousin

Conclusions

The indoor environment is critical for our health

Humans need water vapor

Humidification can present significant challenges

We cannot ignore this!

Bibliography

- Noti JD et al. 2013. Higher Humidity Leads to Loss of Infectious Virus from Simulated Coughs. University of Illinois.
- Kembel SW et al. 2012. Architectural design influences the diversity and structure of the built environment microbiome, The International Society for Microbial Ecology (6) 1469–1479.
- Tropical Medicine & International Health. 2008., Volume 13, Issue 12, pages 1543-1552, 6 Oct.
- Sterling EM et al. 1985. Criteria for Human Exposure to Humidity in Occupied Buildings. ASHRAE Transactions. Vol. 91. Part 1.
- Fuchsman et al. 2017. Effect of the environment on horizontal gene transfer between bacteria and archaea . PeerJ 5:e3865; DOI 10.7717/peerj.3865.
- Donovan TL et al. 2008. Employee absenteeism based on occupational health visits in an urban tertiary care Canadian hospital. Public Health Nursing 25(6), 565-575.

Thank you!

Stephanie Taylor, MD, M Arch, FRSPH(UK), M CABE MD@taylorcx.com (860) 501-8950

